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Abstract

An immersed boundary method for time-dependent, three-dimensional, incompressible flows is presented in this paper.
The incompressible Navier–Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid
fluxes and second-order central-differences for the viscous components. Higher-order accuracy achieved by using weighted
essentially non-oscillatory (WENO) or total variation diminishing (TVD) schemes. An implicit method based on artificial
compressibility and dual-time stepping is used for time advancement. The immersed boundary surfaces are defined as
clouds of points, which may be structured or unstructured. Immersed-boundary objects are rendered as level sets in the
computational domain, and concepts from computational geometry are used to classify points as being outside, near,
or inside the immersed boundary. The velocity field near an immersed surface is determined from separate interpolations
of the components tangent and normal to the surface. The tangential velocity near the surface is constructed as a power-
law function of the local wall normal distance. Appropriate choices of the power law enable the method to approximate the
energizing effects of a turbulent boundary layer for higher Reynolds number flows. Five different flow problems (flow over
a circular cylinder, an in-line oscillating cylinder, a NACA0012 airfoil, a sphere, and a stationary mannequin) are simu-
lated using the present immersed boundary method, and the predictions show good agreement with previous computa-
tional and experimental results. Finally, the flow induced by realistic human walking motion is simulated as an
example of a problem involving multiple moving immersed objects.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The prediction of contaminant dispersal in workplace environments involves consideration of bulk trans-
port effects, such as those induced by heating, ventilation and air conditioning (HVAC) activity, as well as
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local transport effects, such as those induced by human activity and opening/closing doors. Reaerosolization
of deposited particulates may result from human activity, and entrainment of reaerosolized material into
wakes induced by motion events can also serve as a transport mechanism. The prediction of such effects
requires obtaining time-dependent solutions for the hydrodynamic fields (velocity, pressure) induced by the
motion of immersed objects (such as a walking person). While it is possible to simulate complex motion of
such objects by using boundary-conforming, adaptive remeshing of (usually) unstructured grids, the develop-
ment of such techniques is quite complicated. Recently, non-boundary conforming grid methods are attracting
attention in simulations of such problems due to their ability to handle motion of multiple objects without
significant coding complexity.

Non-boundary conforming methods can be divided into two major classes based on the specific treatment
of the boundary cells [1]; (1) Cartesian cut-cell approaches based on the construction of irregular grid cells near
surfaces, and (2) Immersed boundary methods, which enforce wall conditions indirectly through the use of
forcing functions. The Cartesian cut-cell approach has been used in Euler flows [2,3] and has been extended
to simulate viscous flows including moving boundaries [4–6]. In this approach, the Cartesian grid cells that
intersected by the immersed body are reconstructed so that local boundary conformity is achieved. The gov-
erning equations in these cells can be discretized using finite volume methods, but special interpolation pro-
cedures may be needed in order to preserve overall second-order accuracy. This approach allows boundary
conditions on body to be imposed in a manner similar to that used for body-fitted grids. However, an iterative
solution procedure is required due to the irregular stencil near the immersed boundaries, and special remedies
might be needed for a cut-cell formation for complex 3D geometries.

The immersed boundary method was first introduced by Peskin [7] in order to study blood flow in the
human heart. The boundary was modeled as a set of elements linked by springs. Goldstein et al. [8] intro-
duced a feedback forcing approach to enforce the desired boundary conditions at the immersed boundary.
This feedback forcing is successful for low Reynolds number flows, but the computational time step may
be restricted. Recently, Mohd-Yusof [9] and Fadlun et al. [10] recast the immersed boundary method
based on a direct forcing approach. A key to this method is the enforcement of boundary conditions indi-
rectly, through specification of local distributions of the fluid properties (velocity and sometimes pressure)
near the immersed boundary. Fadlun et al. [10] utilized linear interpolations for the velocity at the first
grid point external to the immersed body. The choice of the interpolation direction can be ambiguous
for complex geometries. Kim et al. [11] utilized second-order linear or bi-linear interpolation schemes
within a finite volume context and also introduced mass source/sink forcing in the continuity equation.
Gilmanov et al. [12] developed a general velocity interpolation scheme along the direction normal to an
immersed body, which itself was constructed as an unstructured, triangular mesh. The same interpolation
idea was successfully applied to large-eddy simulation of turbulent flow in a wavy channel [13]. They also
extended their immersed boundary methods to moving-body problems at low and moderate Reynolds
numbers using a quadratic interpolation near the body and a hybrid staggered/non-staggered grid arrange-
ment [14].

The objective of the present study is to develop a more general immersed boundary method that is valid at
all Reynolds numbers and is suitable for implementation on arbitrary grid topologies. The basic approach is
similar to that of Gilmanov, Balaras, and Sotiropoulos [12–14]. Immersed-boundary objects are generated as
clouds of points, which may be structured or unstructured, and are rendered as level sets in the computational
domain. This facilitates the decomposition of the flow field into cells within, near, and outside the body using
concepts from computational geometry. We introduce the concept of tangency correction by decomposing the
velocity into tangential and normal components along the outward normal direction to the immersed surface.
The tangential velocity near the surface is constructed as a power-law function of the wall normal distance.
Suitable choices of the power-law enforce more flow tangency to the surface, thus mimicking the energizing
effect of a turbulent boundary layer. General interpolation techniques are used to connect the functional forms
for the fluid properties near the surface to flow-property and gradient information away from the surface. Five
different problems (flow over a circular cylinder, an in-line oscillating cylinder, a NACA0012 airfoil, a sphere,
and a stationary mannequin) are solved in order to verify the feasibility of the present method. Finally, the
present method is applied to simulate the flow induced by realistic human walking motion as an example
of a problem involving multiple moving immersed objects.
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2. Numerical method

2.1. Governing equations

The governing equations for a three-dimensional, unsteady, incompressible flow can be written as
oui

oxi
¼ 0; ð1Þ

oqui

ot
þ o

oxj
ðquiuj þ pdij � sijÞ ¼ qfi; ð2Þ
where ui is the velocity vector, q is the density, p is the pressure, sij is the viscous stress tensor, and fi is an
external force (set to zero for the remaining developments). The elements of the stress tensor sij for a Newto-
nian fluid can be defined as
sij ¼ l
ouj

oxi
þ oui

oxj

� �
; ð3Þ
where l is the molecular viscosity.

2.2. Basic formulation

We solve the three-dimensional incompressible Navier–Stokes equations in a generalized coordinate system
using a finite volume approach. Time integration of the discrete Navier–Stokes equations is achieved by an
artificial compressibility approach [15] which is facilitated by a dual time stepping procedure at each physical
time step. At time level n + 1, sub-iteration k, the discrete representation of Eqs. (1) and (2) can be written as
AðUnþ1;kþ1 �Unþ1;kÞ ¼ �Rnþ1;k: ð4Þ

The flow variables U are advanced from time level n(Un+1,k=0 = Un) to time level n + 1 over number of sub-
iterations kmaxðUnþ1;k¼kmax ¼ Unþ1Þ. The primitive variable vector is defined as U = (p,ui)

T and A is the system
Jacobian matrix. The corresponding residual vectors R = (RC,RM,i)

T can be written as
Rnþ1;k
c ¼ oui

oxi

� �nþ1;k

; ð5Þ
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3unþ1;k
i � 4un

i þ un�1
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Dt

� �
þ o

oxj
ðquiuj þ pdij � sijÞ � qfi

� �nþ1;k

; ð6Þ
where Rc and RM,i are the residuals for the continuity and momentum equations, respectively. Eq. (3) is solved
approximately at each sub-iteration using an implicit technique based on incomplete LU decomposition [16].
For the spatial discretization, the inviscid fluxes in the governing equations are discretized using a low-diffu-
sion flux splitting scheme (LDFSS) [17,18], while second-order central-differencing methods are used to dis-
cretize the viscous components. Higher-order spatial accuracy for the interface fluxes is achieved by using
total variation diminishing (TVD) or weighted essentially non-oscillatory (WENO) variable extrapolation
methods [19]. The effects of smaller subgrid fluctuations are modeled using a Smagorinsky subgrid eddy vis-
cosity [20]. The present flow solver uses METIS [21] to partition a general multi-block grid over the number of
allowable processors. Message-passing interface (MPI) communication routines are used to pass information
among the processors. The incompressible flow solver and its components have been validated for a range of
model problems [17].

2.3. Immersed boundary method

The present immersed boundary method is based on the direct forcing technique proposed by Fadlun et al.
[10]. They presented a novel formulation of Peskin’s immersed boundary method [7] that has been adapted
for use with our Navier–Stokes solver. The key concept is that the velocity of the fluid must be equal to the
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velocity of the moving body at its surface. This is achieved by applying a forcing function to the momentum
equations such that the desired boundary velocity is recovered as the solution at each time step. We used this
basic idea as the starting point but define the forcing in the context of the sub-iteration method discussed in
Section 2.2.

We introduce forcing terms that relax the velocity and pressure solutions near and within immersed-bound-
aries to interpolated values uB,i and pB over the course of the sub-iterations. The residuals defined in Eqs. (5)
and (6) are redefined as follows:
Fig. 1.
represe
Rnþ1;k
c;B ¼ ð1� GðUnþ1ÞÞRnþ1;k
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where G(U) is a sharp Heaviside function, U(x, t) is a signed distance function at location x and time t, and b is
an artificial compressibility parameter. Specific forms for G(U), U(x, t), uB,i, and pB are discussed in the sections
that follow. In the absence of an immersed body, the sub-iterations serve to eliminate time linearization errors
and to satisfy a divergence-free constraint on the velocity field. When an immersed body is included, the sub-
iterations also serve to adjust the velocity and pressure fields to the updated motion of the immersed body.

2.3.1. Classification of computational nodes

The quantities uB,i and pB are defined according to interpolation methods presented later and are generally
functions of flow properties at field points, as opposed to band points or interior points as shown in Fig. 1. We
develop a classification algorithm for computational nodes based on the signed distance function U(x, t),
which is less than zero for cells within the immersed body and greater than zero for cells outside the body.

The Heaviside function G(U(x, t)) is defined to be one for points just outside the immersed body and within
the immersed body and is zero otherwise. The calculation of the Heaviside function is initiated by first initial-
izing G(U(xk,t)) = 0 for all points xk. Then, given a point xk, if U(xk,t) > 0 and if any U(xk 0,t) < 0, where xk 0 is a
nearest neighbor of xk, then G(U(xk,t)) is set to 1. If U(xk,t) 6 0, then G(U(xk,t)) is also set to 1. The set of
nearest neighbors, for a structured grid discretized according to a cell-centered finite volume method, is gen-
erally defined as the 26 cells that are immediately adjacent to a particular mesh cell, though smaller subsets can
be used. Finally, we can define the Heaviside function as
Field points        Band points         Interior points 

Immersed body surface 

Interior points 

Field points 

Schematic illustrating classification of cell-centered points for a complex immersed body surface. Open, gray and close circles
nt field (XF), band (XB) and interior points (XI), respectively, and the thick line represents an immersed body surface.
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GðUðxk; tÞÞ ¼
0 xk 2 XF;

1 xk 62 XF;

�
ð9Þ
where XF represents the set of the node points shown as the open circles in Fig. 1. Classification of the node
points can be summarized as follows:
� Field points : xk 2 XF if Uðxk; tÞ > 0 and GðUÞ ¼ 0; ð10Þ
� Band points : xk 2 XB if Uðxk; tÞ > 0 and GðUÞ ¼ 1; ð11Þ
� Interior points : xk 2 XI if Uðxk; tÞ 6 0 and GðUÞ ¼ 1 ð12Þ
where XB and XI represents the set of the node points shown as the gray and closed circles in Fig. 1, respec-
tively. The zero iso-surface of the signed distance function defines the immersed body surface. Note that the
flow properties at band and interior points are calculated from Eqs. (7) and (8) in the limit of G(U) = 1.

2.3.2. Surface definition and distance function

The first step in the simulation is to define an immersed body as a collection of surface points. This can be
done using a computer aided design (CAD) format or through other means, but the key is that a list of surface
points and outward-pointing unit normal vectors is created for each separate component of the body, as dif-
ferent components may move at different rates. The next step is to calculate the signed distance from each
point xk 2 X to the nearest surface point xs,l(k) 2 Cl on the lth body component as shown in Fig. 2. This is
accomplished first through the use of approximate nearest-neighbor (ANN) searching techniques [22], which
return the unsigned distance. In practice, this is done only for the number of field points that are within a
bounding box surrounding the particular surface, as it is these points that are likely to be influenced immedi-
ately by the body. Distances outside the bounding box are assigned to be a very large positive number. Ini-
tially, the signed distance function Ul(xk, t) was obtained by multiplying the unsigned distance with the sign
of the dot product of the distance vector with the outward normal vector ns,l(k):
Ulðxk; tÞ ¼ sgnððxk � xs;lðkÞÞ � ns;lðkÞÞ � xk � xs;lðkÞ
�� ��; ð13Þ
where sgn(/) returns a value of 1 for each non-negative element and �1 for each negative element of /, and i i
denotes the magnitude of the vector.

This simple procedure was found not to work properly for some very complex CAD objects. Usually, the
CAD objects are defined as triangular surface elements that contain each vertex and face normal vector. If a
nearest surface point at a given field point is located at an edge or vertex, the simple signed distance function
may not be calculated correctly. Therefore, we augment the original set of face-centered surface points by
including all vertices. At each vertex, we define an angle-weighted pseudo-normal vector [23] as follows.
For a given vertex xv,l, we can determine the triangular elements shared with the vertex and can calculate
kx

ls,x

)(, klsx
)(, klsn

ls,n
Immersed  
body surface

FΩ

lΓ

),( tkl xΦ

Schematic illustrating approximate nearest point and the corresponding signed distance function Ul(xk, t). Open and closed circles
nt cell-centered grid points for field points XF and surface node points for the lth immersed body surface Cl.
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the incident angle ai, l for each element with outward-pointing face normal vector ni, l in Fig. 3. The angle
weighted pseudo-normal vector nv, l at the vertex can be defined as
Fig. 3.
{n1,n2
nv;l ¼
P

iai;lni;lP
iai;lni;l

�� �� ; ð14Þ
where i denotes the triangle elements that surround the vertex. Based on the pseudo-normal vectors at the ver-
tices and the face normal vectors ni, l at the element centers xi, l, we can determine an inside/outside decision
using Eq. (13). This procedure essentially averages local fluctuations in the outward normal that could result
from small features in the CAD file.

Our inside/outside decision algorithm is based on finding the nearest face-center or vertex and the cor-
responding normal vector or pseudo-normal vector instead of searching for the closest point on the closest
element. As such, the present decision procedure is simpler than the searching algorithms used in compu-
tational geometry. Even with the use of the pseudo-normal vector, the decision process can still fail for very
complex CAD geometries because of holes or gaps in the geometry. To help correct this problem, we have
implemented a consensus algorithm [24] that compares results for neighboring points to ensure smoothness.
As mentioned above, for a given point, we have to find the nearest surface point using the ANN algorithm.
In the process of doing this search, the ANN algorithm can also give us a cloud of nearby points Cl(k) � Cl,
in order of closest distance. Therefore, we can consider a committee of these nearby points to determine the
correct inside/outside classification. For a given number of committee points N, we can define Ni and No as
the number of inside and outside decisions, respectively. The corrected signed distance function ~Ulðxk; tÞ is
defined as
~Ulðxk; tÞ ¼ sgnðN o � N iÞ Ulðxk; tÞj j; ð15Þ

where N is initially set to be an odd number and j j denotes the absolute value of the original signed function
computed at point k.

To define a global signed distance function U(xk,t) at any given mesh point, a simple priority rule is exer-
cised. First, the global distance function is initialized to a large number. Then, the global signed distance func-
tion at a particular point is taken as the minimum of the individual signed distance functions for each
component l at that point:
Uðxk; tÞ ¼ min
l
ð~Ulðxk; tÞÞ: ð16Þ
The collections of points that comprise the surfaces are allowed to move according to prescribed rate laws.
Some examples for human walking motion are discussed in Section 3.6. Once new surface positions are ob-
tained, the preceding steps for determining the signed-distance and Heaviside functions have to be repeated.

For complex CAD objects, the procedure for determining the signed distance function is summarized as
follows:
1n 2α1α 3α

2n

1x

3x

2x

v
x

3n

αn

The incident angles {a1,a2,a3, . . .} of triangular elements shared with a vertex xv. The corresponding outward normal vectors are
,n3, . . .} at the node points {x1,x2,x3, . . .}.
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� Determine a set of face-centered surface points and outward normal vectors (this information is usually
supplied by the CAD program). Augment this set by adding the vertices with pseudo-normal vectors cal-
culated using Eq. (14).
� For a given point in the field, find the nearest surface point and a cloud of nearby surface points using the

ANN searching algorithm.
� Compute the signed distance between the given point and the nearest surface point using Eq. (13).
� Compute the signed distance between the given point and the cloud of nearby surface points using Eq. (13).
� Correct the signed distance to the nearest surface point using the consensus algorithm in Eq. (15).
� Repeat the above procedure for each component.
� Compute the global signed distance function using Eq. (16).

To assess the different variations in the point classification scheme, a human mannequin is visualized
using the zero level set of the signed distance function. The immersed surface is rendered as a stereolithog-
raphy (STL) file using a trial version of Mannequin Elite ver.1.2 (NextGen Ergonomics Inc.). To improve
the surface resolution of human body, additional triangle elements are inserted, considering the edge dis-
tance of the largest triangle element as a metric for refinement. Consistent face-based outward-pointing
normal vectors were obtained using ADMesh ver.0.95 (http://www.varlog.com/products/admesh/) for
the refined surface meshes. The size of human model is 1.74 m tall and 0.6 m wide at chest. The average
edge distance of the triangle mesh is about 0.01 m. The entire human model is separated into 15 body
segments. Two different data sets are considered. The first is the original set of face-centered surface points
with face normal vectors and the other is an extended data set that also includes vertices of triangular
elements with pseudo-normal vectors. The total numbers of surface points for the original data set and
the extended data set are 86,880 and 130,444, respectively. Fig. 4 compares the effects of the different clas-
sification schemes (original data set with and without consensus algorithm (schemes 1 and 2); extended
data set with and without consensus algorithm (schemes 3 and 4)) on the immersed body rendering. A
uniformly-spaced background mesh (Dh = 0.01 m) is used in the assessment, and the total number of cells
is 640,000. For purposes of comparison, we assume that the inside/outside decision obtained using the
extended data set with the consensus algorithm is the correct one. Based on this reference rendering,
incorrect inside/outside decisions using the other schemes are highlighted in Fig. 4 as dark contours,
Fig. 4. Assessment of surface definitions using the different schemes: (a) face-centered data set, (b) face-centered data set with consensus
algorithm, (c) extended data set and (d) extended data set with consensus algorithm. The iso-surface of the human rendering is extracted
from the extended data set with consensus algorithm. The dark iso-surfaces show misclassified cells based on the rendering of case (d).

http://www.varlog.com/products/admesh/


Table 1
Misclassification on the surface definitions using the different schemes

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Number of surface points 86,880 86,880 130,344 130,344
Number of misclassified cells 71,304 796 990 –
Percentage of misclassifications (%) 11.1 1.24 1.55 –

Fig. 5. The sensitivity of the classification procedure to the relative background grid resolution: (a) Dh = 0.04, (b) Dh = 0.02, (c) Dh = 0.01
and (d) Dh = 0.005.

Table 2
Volume recovery of the surface definition at the different background grid resolutions

Resolutions Dh = 0.04 Dh = 0.02 Dh = 0.01 Dh = 0.005

Number of cells 10,000 80,000 640,000 5,120,000
Volume (·10�2 m3) 6.157 7.206 7.528 7.662
Volume recovery (%) 80.4 94.0 98.3 –
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and quantitative comparisons in terms of the number of points classified incorrectly are shown in Table 1.
The use of the consensus algorithm with the face-centered data set provides substantial improvement
(1.24% misclassified cells versus 11.1%) as does the use of the extended data set alone (1.55% misclassified
cells versus 11.1%).

The sensitivity of the surface rendering to the relative resolution of the immersed surface and background
grid is assessed by varying the background grid resolution. Fig. 5 shows the immersed body rendering
extracted from the extended surface data set with the consensus algorithm on four different background grids.
For the finest resolution (5.12 million cells) in Fig. 5(d), the fine details of the surface are well captured since
the background mesh spacing is smaller than the average surface resolution of 0.01 m. As background grid is
coarsened, the detected surface maintains the general features of the mannequin but loses the details. Table 2
summarizes the total number of cells, the occupied volume of the immersed body, and the volume recovery
ratio (measured relative to the surface rendering at the finest background resolution) as a quantitative measure
of the sensitivity of the present classification scheme. When the background resolution is less than
Dh = 0.02 m, the volume of the immersed body can be recovered to 94% of the original volume. As a rule
of practice, we will typically require that the average surface resolution be at least twice as fine as the average
mesh spacing to ensure that the inside/outside classification process is performed correctly. This restriction
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may be lessened by searching for the true distance to the nearest point on the faceted surface, instead of the
distance to the nearest face-center or vertex.

2.3.3. Interpolation methods
In our interpretation of the direct forcing technique [10], the Navier–Stokes equations are not solved for

band and interior points. Rather, the solution for the flow properties at these points is forced as a function
of the field point solutions in neighboring cells and the surface velocities. As it is unlikely that a cell-centered
grid will coincide with the surface, the velocity solutions within the band points need to be determined using
interpolation techniques. Many researchers have investigated different methods for performing this interpola-
tion, primarily in the context of Cartesian grid topologies [1,10–14]. As our techniques are designed for use on
arbitrary grid topologies (even unstructured meshes), a different approach is proposed. For interior points, the
forcing velocity is simply set to that of the nearest surface point, and the forcing pressure is set to a free-stream
value.

2.3.3.1. Velocity interpolation. A linear interpolation scheme for velocity interpolation near the immersed sur-
faces has often been used for direct forcing in the immersed boundary treatment [10]. This rationale is based
on the assumption of a one-dimensional linear velocity profile near a solid surface and is appropriate for some
low Reynolds number flows. Several studies [12–14] that compare the accuracy and efficiency of different
velocity interpolation methods have been published recently. In the present work, we introduce the concept
of tangency correction by decomposing the velocity into the tangential and normal component along the out-
ward normal direction to the immersed surface. A velocity distribution is defined in terms of the normal coor-
dinate n, which is not necessarily equal to the distance function itself but should be nearly so. Given that the
vector n defines the local surface normal vector at the nearest surface point xS to the band point xB as shown in
Fig. 6, a general velocity distribution can be decomposed as follows:
Fig. 6.
surface
uB;iðnÞ ¼ uT;iðnÞ þ uN;iðnÞ þ uS;i: ð17Þ

where the subscripts T and N denote the tangential and normal directions in a orthogonal plane to the surface,
respectively, and uS,i is the velocity at the nearest point on the immersed surface. The tangential velocity com-
ponent (defined relative to the velocity at the nearest surface point), is expressed as a power-law function of the
normal coordinate:
uT;iðnÞ ¼ uT;iðdIÞ þ 1� n
dI
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Here, the tangential velocity and its gradient at the interpolation points can be obtained as
uT;iðdIÞ ¼ ðuiðdIÞ � uS;iÞ � ½ðujðdIÞ � uS;jÞnj�ni and
duT;i

dn

����
n¼dI

� ouiðdIÞ
oxj

nj �
oukðdIÞ

oxj
nj

� �
nk

� �
ni; ð19Þ
where a summation is indicated by repeated indices.
The normal velocity component is expressed as a cubic function of the normal coordinate since the second

derivative of the wall normal velocity should vanish at the surface in order to conserve momentum [10]:
S B I

ld
n

Sx Bx Ix

Interpolation stencil near the band point B along the outward normal direction n. The characters S and I represent the immersed
point and the interpolation point, respectively.
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The interpolated normal velocity and its gradient can be evaluated as
uN;iðdIÞ ¼ ½ðujðdIÞ � uS;jÞnj�ni and
duN;i

dn

����
n¼dI

¼ oukðdIÞ
oxj

nj

� �
nk

� �
ni: ð21Þ
In this, ui(dI) is an interpolated velocity, oukðdIÞ
oxj

is a velocity gradient, and dI is the location in the direction of the
normal coordinate at which these quantities are defined (the interpolation point). Methods for evaluating these
quantities are presented in Section 2.3.3.3. To arrive at the forcing velocity for a particular band pointxk, one
simply evaluates the interpolation polynomials at n = U(xk, t). The terms in braces in Eqs. (18) and (20) are
second-order corrections. These allow the functional forms to match the slope of the imposed velocity profile
at the interpolation point dI.

The velocity distribution for the tangential component is written in terms of a general power law �nk,
rather than the common assumption of a linear velocity profile, since small values of k (k = 1/7 or 1/9)
approximate the logarithmic distribution expected in the near wall region for an attached turbulent flow.
While this feature generally promotes flow attachment to the immersed surface, it is not a slip-wall condition,
as for n = U(xk, t) near enough to zero; the velocity will go to zero as long as k is finite. Nor does it necessarily
prohibit separation of the flow. The normal velocity distribution is defined so that its second-derivative is
maintained at the surface (n = 0) in order to satisfy the Neumann conditions for wall normal pressure gradient
as discussed in Fadlun et al. [10]. Within this framework, there are several ways to control the velocity distri-
bution. The general trend is to promote more flow attachment to the surface with lower values of k. The
proper specification of this parameter is problem-dependent. Numerical experiments indicate that very low
Reynolds number flows (Re < 1000) seem to require a linear distribution (k = 1), whereas high Reynolds num-
ber flows (Re > 10,000) appear to require a k = 1/7 or k = 1/9 power-law distribution in order to inhibit mas-
sive flow separation.

2.3.3.2. Pressure interpolation. A general procedure for interpolating the pressure to the surface is given by the
following. We assume that the difference between the pressure and its free-stream value is represented as a sec-
ond-order polynomial in the normal distancen for points within the band:
pBðnÞ � p1 ¼ aþ bnþ cn2 ð22Þ

with boundary conditions at n = 0 given as
pBð0Þ � p1 ¼ pw � p1 ¼ a and
dpB

dn

����
n¼0

¼ b; ð23Þ
where b is related to the acceleration of the surface (zero for constant velocity or no movement). Evaluating
these expressions at the location of the interpolation point outside the band gives
pBðdIÞ ¼ aþ bdI þ cd2
I and

dpB

dn

����
n¼dI

¼ bþ 2cd I: ð24Þ
Given a value for b, this system can be solved for the unknowns a and c, yielding a final form for the inter-
polation polynomial:
pBðnÞ ¼ pBðdIÞ þ bn� 1

2
dI

dpB

dn

����
n¼dI

þ b

 !
1� n

dI

� �2
 !

: ð25Þ
This equation is evaluated at the band point n = U(xk, t) to give the desired result. The predicted value for the
wall pressure is determined by evaluating Eq. (25) at n = 0.



J.-I. Choi et al. / Journal of Computational Physics 224 (2007) 757–784 767
2.3.3.3. Determination of information at the interpolation point. The preceding developments hinge on the
determination of flow properties and gradients at a certain distance dI away from the immersed surface.
Given a band point xk and a list of nearest neighbors to that point xl in Fig. 7, a merit function wl is defined
as follows:
Fig. 7.
using t
node x

circles
wl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xl � xkk k2 � ½ðxl � xkÞ � n�2
q

þ e
if ðxl � xkÞ � n > 0; and wl ¼ 0 otherwise; ð26Þ
where (xl � xk) Æ n is the projection of the distance dl from xk to xl in the direction of the outward normal, and
ixl � xki is the magnitude of the distance vector itself. Note that e is added to the denominator in Eq. (26) in
order to avoid a numerical singularity in defining the merit function. If point xl is located directly along the
outward normal line corresponding to band point xk, and if (xl � xk) Æ n is positive, meaning that point xl is
further away from the surface than point xk, then the merit function returns a very large value (�1/e, where e is
assumed to be 10�12 in the present study).

The actual calculation of wl is performed in three stages. First, only field points are considered as members
of the list of nearest neighbors. Then, wl is calculated according to Eq. (26), and the sum of the weights

P
mwm

is calculated. If this sum is non-zero, then the weight function xl for each nearest-neighbor is determined as
xl ¼ wl

X
m

wm:

,
ð27Þ
Otherwise, the process is repeated, now considering both field points and other band points as members of the
list of nearest neighbors. If this application also results in no viable interpolation points being found, then the
band point xk is effectively set to an interior point.

The location at which interpolated properties are defined, dI, is calculated for a particular field point as
dI ¼
X

l

xldl ¼
X

l

xlðxl � xkÞ � n: ð28Þ
Note that this distance is in the direction of the normal coordinate n. A specific flow property q and its gra-
dient dq

dn at the interpolation point are calculated by the weighting functions as follows:
qðdIÞ ¼
X

l

xlql and
dq
dn

����
n¼dI

¼
X

l

xl
oq
oxj

� �
l

nj: ð29Þ
Note that the normal vector in Eq. (29) refers to the band point in question, not the field point l.
Schematic determination of the distance dI between the interpolation point xi and surface node point for a given band point xk

he projected distance dl from neighbor points xl to outward normal line based on surface normal vector n at the immersed surface

s. Large closed circle represent the band point to be interpolated with the information at neighbor point. Hatched black and gray
represent the field points and band points associated with the present determination, respectively.
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3. Numerical examples

3.1. Flow over a circular cylinder

To quantify the accuracy of the present immersed boundary method, we have computed several classical
benchmark problems used to validate incompressible-flow solvers. The first case is low Reynolds number,
2D flow over a cylinder, which exhibits vortex shedding at Reynolds numbers (Re) above �43 and is steady
for lower Reynolds numbers. Reynolds numbers (based on the cylinder diameter D and the free stream veloc-
ity u1) up to 200 are considered in the present study. The size of computation domain is 80D · 80D, where D

is the diameter of the cylinder. The numbers of grid points are 321 · 321 in the streamwise and transverse
directions, respectively. A uniform 41 · 41 square mesh is used in the D · D control volume surrounding
the cylinder for Re = 40, while a 81 · 81 uniform mesh is used for Re = 100 and 200. The mesh is stretched
to the inflow, outflow and far-field boundaries. A Dirichlet boundary condition u/u1 = 1, v = 0 is applied
at the inflow and far-field boundaries, and a subsonic outflow condition is used at the outflow boundary.
A power k = 1 is used for this case and for the case involving flow over a sphere.

We have performed a grid refinement study for 2D flow over a cylinder in order to demonstrate the second-
order accuracy of the present method. The Reynolds number of this flow is set to Re = 40. Four uniformly
spaced, successively finer mesh sizes are used for error analysis, with 212, 412, 812 and 1612 grid points in
the vicinity of the cylinder. The finest mesh solution is considered to be the exact solution. The L2 norm error
can be defined as
Fig. 8.
e2
g ¼

1

n

X
n

/g
n � /g¼161

n

�� ��2; ð30Þ
where / denotes solution variables such as velocity and pressure, g represents different grid levels, and n is the
number of grid points within the D · D control volume surrounding the cylinder. The results of the grid refine-
ment study are summarized in Fig. 8, which shows the variation of the error with grid spacing Dh in a log–log
scale. It is evident from Fig. 8(a) that both the first- and second-order velocity interpolation methods converge
at a second-order rate. A local error in the band points is defined to investigate the effect of the interpolation
method very near the immersed surface (Fig. 8 (b)). Results indicate that the second-order velocity interpola-
Grid convergence study for flow over a cylinder: (a) Interior flow field (D · D) and (b) band points in the vicinity of the cylinder.
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tion provides essentially second-order convergence. However, the convergence rate of the pressure is closer to
first order. This is because the pressure gradient near the immersed surface is defined using a first-order finite
difference. The convergence rate analysis confirms that the present method is globally second-order accurate.

Direct evaluation of surface forces in our immersed-boundary method is difficult, as the underlying surface
mesh may contain no structure and as not all points on the surface are directly used by neighboring band
points. Recently, Balaras [13] proposed to compute the forces on the cylinder surface by applying the momen-
tum theorem to the control volume V. The corresponding surface is bounded by the surface S = So [ Sb,
where So is a fixed surface and Sb is the immersed body. The force vector Fi is given by
Table
Drag c

Ye et a
Fornb
Dennis
Calhou
Russel
Body fi

Presen
Presen

Fig.
F i ¼
Z

V

o quið Þ
ot

dV þ
Z

So

ðquiuj þ pdij � sijÞnj dso: ð31Þ
Then, the drag (CD) and lift coefficients (CL) are computed by,
CD ¼
F x

ð1=2Þqu2
1D

and CL ¼
F y

ð1=2Þqu2
1D

ð32Þ
where x and y denote the streamwise and normal directions in Cartesian coordinates. Table 3 presents drag
coefficient, reattachment length (L/D) and separation angle (h) for the present method at Re = 20 and 40 com-
pared with literature values. Both first- and second-order methods show good agreement for reattachment
length and drag coefficient. The first-order method under-estimates the separation angle but the second-order
method shows a significant improvement. This is because matching the velocity gradient at the interpolation
point enhances the prediction of flow separation, which is closely related to the inflection of the velocity profile
near the surface. Fig. 9 shows the pressure coefficient and spanwise vorticity variations along the cylinder sur-
face at Re = 40. It is shown in Fig. 9 that the pressure coefficient obtained using the first- or second-order
3
oefficient, reattachment length and separation angle for flow over a cylinder

Re = 20 Re = 40

L/D h CD L/D h CD

l. [5] 0.92 – 2.03 2.27 – 1.52
erg [25] 0.91 – 2.00 2.24 – 1.50

and Chang [26] 0.94 43.7 2.05 2.35 53.8 1.52
n [27] 0.91 45.5 2.19 2.18 54.2 1.62

l and Wang [28] 0.94 43.3 2.13 2.29 53.1 1.60
tted grid 0.92 43.8 1.98 2.21 53.6 1.49

t (first-order) 0.89 35.3 2.03 2.24 45.1 1.52
t (second-order) 0.90 40.8 2.02 2.25 51.0 1.52

9. Flow variables along the cylinder surface at Re = 40; (a) wall pressure coefficient (Cp) and (b) wall spanwise vorticity (xz).
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methods agrees well with that obtained on a body fitted grid using the same computational code and with Kim
et al.’s [11] results obtained using a different immersed boundary method. However, the magnitude of the wall
vorticity using the first order interpolation is underestimated at 20� 6 / 6 90�. Predictions from the second-
order method agree well with the other results.

To assess the present immersed-body approach for unsteady flows shed by bluff objects, we consider 2D
flow over a cylinder at Re = 100 and 200. Table 4 shows results for drag and lift coefficients and Strouhal num-
ber (St = fD/u1). Note that f is shedding frequency. As shown in Table 4, the present second-order method
accurately predicts unsteady characteristics such as shedding frequency and oscillations of CD and CL for
Re = 100 and 200. Fig. 10 shows streamlines super-imposed on pressure coefficient contours for Re = 100.
The present method clearly captures vortex shedding behind the cylinder.

3.2. Flow over an in-line oscillating cylinder

To validate the present method for a moving boundary problem, an in-line oscillating cylinder in a fluid at
rest is considered. The two characteristic parameters for this flow are the Reynolds number, Re = UmaxD/m,
where Umax is the maximum velocity of the cylinder, and the Keulergan–Carpenter number, KC = Umaxf/
D, where f is the frequency of the oscillation. In-line oscillatory motion of the cylinder is given by a simple
harmonic relationship
Table
Drag a

Kim e
Calhou
Russel
Rosen
Wrigh
Braza
Liu et

Presen

Fig. 10
respec
xcðtÞ ¼ �A sinð2pftÞ; ð33Þ

where xc(t) is the position of the cylinder center in the direction of oscillation and A is the amplitude of oscil-
lation. The two characteristic parameters are chosen as Re = 100 and KC = 5 in order to compare the present
4
nd lift coefficients, and Strouhal number for flow over a cylinder

Re = 100 Re = 200

CD CL St CD CL St

t al. [11] 1.33 ±0.32 0.165 – – –
n [27] 1.35 ± 0.014 ±0.300 0.175 1.17 ± 0.058 ±0.67 0.202

l and Wang [28] 1.38 ± 0.007 ±0.322 0.169 1.29 ± 0.022 ±0.50 0.195
feld et al. [29] – – – 1.31 ± 0.04 ±0.65 0.20
t and Smith [30] – – – 1.33 ± 0.04 ±0.68 0.196
et al. [31] 1.36 ± 0.015 ±0.25 – 1.40 ± 0.05 ±0.75 –
al. [32] 1.35 ± 0.012 ±0.339 0.164 1.31 ± 0.049 ±0.69 0.192

t (second-order) 1.34 ± 0.011 ±0.315 0.164 1.36 ± 0.048 ±0.64 0.191

. Snapshot of unsteady wake flow over a cylinder (Re = 100). Contour and line show the pressure coefficient and stream trace line,
tively.
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results with experimental data of Dütsch et al. [33]. The computational domain is 50D · 30D in the oscillatory
and transverse directions with 480 · 240 grid points. A similar mesh was used by Yang and Balaras [34] in
their calculations of this flow field. The center of the cylinder is initially located at the center of the compu-
tational domain. A uniform 41 · 41 mesh is used near the cylinder. Neumann boundary conditions for the
velocity and a zero gauge pressure condition are used at all far-field boundaries. As suggested by Yang and
Balaras [34], a non-zero pressure gradient (op/on)jn=0 = �(Dui/Dt)ni at the moving body surface is enforced
in Eq. (25) in order to obtain the correct behavior of the pressure field near the immersed boundaries. A power
law value of 1 is used in this calculation.

Fig. 11 compares calculated profiles of velocity in the axial and transverse directions at four different x

locations (x = �0.6D, 0.0D, 0.6D and 1.2D) for three different phase angles with the experimental data of
Dütsch et al. [33]. The present simulation shows good agreement with the experimental data, and the results
are very similar to those obtained by Yang and Balaras [34]. Fig. 12 compares the predicted time history of
the drag coefficient in the axial direction with the results of Dütsch et al. [33]. Good agreement is again
observed, indicating that the method accurately predicts the surface shear stress and the pressure on the
cylinder.
Fig. 11. Velocity profiles u/Umax and v/Umax in oscillatory and transverse directions, respectively, for three different phase angles (/
= 2pft): (a) / = 180�; (b) / = 210�; (c) / = 330�. Lines are the present results; symbols are the experimental data in Dütsch et al. [33]: (- - -
and n) at x = �0.6D; (- - - and m) at x = 0.0D; (- Æ - and ¤) at x = 0.6D; (� � � and d) at x = 1.2D.



Fig. 12. Time history of the drag coefficient at Re = 100 and KC = 5: line and symbols represent the present computation and result of
Dütsch et al. [33], respectively.
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3.3. Flow over an airfoil

To evaluate the present method for a higher Reynolds number flow, we have investigated flow over a
NACA 0012 airfoil at Re = 5 · 105 and Re = 109 based on the chord length (lc). The corresponding freestream
velocity is about 70 m/s. The size of the computation domain is (9lc, 10lc) · (�9lc, 9lc) and a Cartesian grid
system containing 243 · 177 nodes is used. The grid system is clustered to the leading and trailing edges of
the airfoil. Fig. 13 presents surface pressure coefficients for Re = 5 · 105 flow over the airfoil at angles of
attack of 3� and 7�. Results are compared with inviscid predictions obtained from XFOIL [35], an established
computer code for predicting airfoil characteristics. Good agreement with the XFOIL results is indicated. For
the Re = 109 case, the angle of attack (a) is varied from �19� to 0�. The Reynolds number is high enough so as
to require modeling of turbulence effects, which transfer momentum from the external flow toward the surface
and thus reduce the tendency of the flow to separate at high angles of attack. In the present method, the
power-law interpolation of the tangential velocity serves to mimic the energizing effect of a turbulent boundary
layer. Fig. 14 presents the effect of varying the power law from 1 (a linear profile as used in the low Reynolds
number calculations) to 1/9 (representative of a fully-developed turbulent boundary layer) on velocity magni-
tude predictions for an angle of attack of �16�. For a power of 1 (k in Eq. (18)), the flow detaches from the
Fig. 13. Comparison of surface pressure predictions with XFOIL inviscid data [35] (Re = 5 · 105).



Fig. 14. The effect of power on velocity magnitude for flow over a NACA 0012 airfoil: (a) k = 1, (b) k = 1/3, (c) k = 1/7; and (d) k = 1/9.
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lower surface the airfoil near the leading edge. As the power k is reduced, the onset of separation moves
toward the trailing edge, and the flow field becomes more steady.

The effect of the angle of attack on the lift coefficient is shown in Fig. 15 for a power of 1/7. The lift gen-
erated by an airfoil generally increases linearly with increasing angle of attack until a maximum value is
reached. An increment of the angle of attack beyond the maximum results in decreasing lift due to the presence
of massive flow separation. The present results show good agreement with experimental data [36] and XFOIL
analysis [35]. Considering that the grid used in this study does not resolve fine details of the boundary layer
and that no turbulence modeling is employed, the level of agreement is encouraging.

3.4. Flow over a sphere

Results for simulations of flow over a sphere are presented in this section. Three different Reynolds num-
bers (Re = 100, 250 and 300) based on the sphere diameter and the free stream velocity are considered since
the change in Reynolds number results in three different flow regimes: steady axisymmetric flow (Re < 200),
Fig. 15. Variation of lift coefficient (CL) due to the angle of attack (a) for flow over a NACA 0012 airfoil.
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steady asymmetric flow (210 < Re < 270) and unsteady flow (Re > 280) [37]. The computation domain used is
30D · 30D · 30D, where D is the diameter of sphere. Calculations at Re = 100 use a 151 · 151 · 151 mesh,
containing 41 · 41 · 41 uniformly-spaced mesh points in the D · D · D domain surrounding the sphere. A
Dirichlet boundary condition u/u1 = 1, v = 0 is applied at the inflow and far field boundaries, and a subsonic
outflow condition is used at the outflow boundary. Calculations at Re = 250 and Re = 300 were performed on
a finer 196 · 196 · 196 mesh with an 81 · 81 · 81 uniformly-spaced mesh in the D · D · D domain surround-
ing the sphere. Twenty-five sub-iterations were used in the unsteady calculations at Re = 300.

Table 5 shows our results for the drag and lift coefficients and Strouhal number versus those of several
other studies. As shown in Table 5, the present method accurately predicts unsteady characteristics such as
shedding frequency and oscillations of CD and CL for the Re = 300 case, as well as steady drag and lift coef-
ficients for the lower Reynolds numbers. Note that CD and CL for Re = 300 are time-averaged values. Surface
pressure coefficient and wall azimuthal vorticity xh for the axisymmetric Re = 100 case are plotted in Fig. 16.
Comparison with the results of other researchers indicates that the present immersed boundary method rep-
resents the flow near the spherical surface very well. Fig. 17 shows a snapshot of the three-dimensional vortical
structure at Re = 300. Here, the vortical surfaces are identified using the method of Jeong and Hussain [38].
Table 5
Drag and lift coefficients and Strouhal number for flow over a sphere

Re = 100 Re = 250 Re = 300

CD CD CL CD CL St

Kim et al. [11] 1.09 0.70 0.059 0.657 0.067 0.134
Johnson and Patel [39] 1.08 0.70 0.062 0.656 0.069 0.137
Constantinescu and Squires [40] – 0.70 0.062 0.655 0.065 0.136
Present (second-order) 1.09 0.70 0.052 0.658 0.068 0.134

Fig. 16. Flow variables along the sphere surface at Re = 100; (a) wall pressure coefficient (Cp) and (b) wall azimuthal vorticity xh.

Fig. 17. Instantaneous vortical structure at Re = 100.
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The flow is unsteady and the vortices are asymmetrically shed. This behavior is nearly the same as shown in
Johnson and Patel [39] and indicates that the present immersed boundary method accurately captures the
three-dimensional vortex dynamics.

3.5. Flow over a stationary mannequin

To validate the present method in predicting flow dynamics behind a realistic human body, a simulation of
an experiment of Kim and Flynn [41] involving flow over a mannequin was conducted. These experiments
used smoke-wire flow visualization and hot-wire anemometry to arrive at a characterization of the wake flow
behind a stationary mannequin. We obtained a stereolithography (STL) file for a child mannequin similar to
that of Kim and Flynn [41] by using a trial version of Mannequin Elite ver.1.2 (NextGen Ergonomics Inc.).
Locally refined surface triangles were then added to achieve better resolution of the mannequin. The inside/
outside algorithm using the extended surface data set with consensus logic (Section 2.3.2) was used to render
the CAD file as a level set in the computational domain. The size of the mannequin was adjusted to approx-
imate that of Kim and Flynn [41]: 1.04 m tall and 0.20 m wide at the chest.

The Kim and Flynn experiments were carried out in a low-speed, open circuit wind tunnel 0.465 m2 and
2.419 m deep with a velocity range of 0.127–1.397 m/s. To avoid feedback effects, the inflow boundary condi-
tion is applied at a location 1.219 m upstream of the wind-tunnel test-section entrance in the experiment. Also
to avoid the distortion of flow characteristics near the outflow boundary, a buffer region of length 2.438 m is
added to the end of the domain. The computation domain size in units of meters is (�2.438,4.879) ·
(�0.762, 0.762) · (0,1.524) for the streamwise, spanwise and normal directions, respectively. The correspond-
ing grid resolution is 181 · 105 · 119. The freestream air velocity is u1 = 0.762 m/s, and no-slip boundary
conditions are enforced on the wind-tunnel walls. The computational time step is chosen as Dt = 0.015 s to
maintain a CFL number less than one. The calculation is performed until t = 420 s. Two different powers
(k = 1/7 and 1) for the tangential velocity interpolation are tested to assess the effect of the power law in
the prediction of flow separation and reattachment. The Reynolds number based on the chest width is
Re = 22053.

After an initial transient region of 60 s, statistics (based on 4000 samples) were taken over the next 360 s.
Convergence to a statistically steady state was determined by monitoring the mass balance between inflow and
outflow planes and the time history of the velocity field. Fig. 18 shows iso-surfaces of time-averaged axial
velocity. The structure of the upper separation zone is very similar to the scanned figure from Kim and Flynn
[41] (Fig. 18(a)). In general, the width and length of the separation zone is proportional to the width of the
mannequin at each level. However, in the upper chest region, the present results show that the separation
is delayed and the corresponding width of the separation zone is almost the same as the width of the neck
for both k = 1 and k = 1/7. A grooved region in the upper separation zone is observed near the junction
between the arm and chest region. This is because the high shear flows at the junction delay separation
and then enhance the axial momentum transfer. Two flow separation zones in the present simulation are
Fig. 18. Iso-surfaces of zero axial velocity. (a) Experiment [41], (b) power k = 1/7 and (c) power k = 1.
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observed, in accord with the description of the flow structure provided in Kim and Flynn [41] but not with
their isosurface data. Apparently, smoke-wire images in planes below the waist were not mapped in their
experiment. The lower separation zone is driven by the high shear flow between the legs of the mannequin.
Fig. 18(b) and (c) show that the maximum axial displacement of the upper separation zone occurs at a plane
near the belly button, which is consistent with the experimental data.

Fig. 19 shows contour plots of time-averaged axial velocity in the different planes for the two power laws.
As shown in Fig. 19(a) (left and right) two regions of flow separation are observed. In the upper region, the
flow separates near the chin and then attaches near the belly button. In the lower region, the flow separates
near the hip and then attaches near the thigh. The separation zones for a power law of 1 are more elongated in
the axial direction than for a power law of 1/7. Figs. 19(b)–(d) show the recirculation regions in a lateral plane.
The mean averaged flow fields are not bilaterally symmetric, as the arms are not placed symmetrically. It is
worthy to note that the contour plots for a power law of 1 show earlier separation than for a power law
1/7. This implies that the use of the lower power law energizes the near-surface velocity field, delaying its
departure from the body. The predicted sizes of the separation zones are summarized in Table 6.

Fig. 20 shows contour plots of time-averaged turbulence kinetic energy in the different planes for the two
power laws. High levels of turbulence energy are observed near the boundary of the two separation zones for a
power of 1 while a more well-distributed range of turbulence energy levels is observed in that region for a
power of 1/7. It may be conjectured that large scale vortices due to the earlier separation for a power of 1
enhance turbulence energy transfer in that region. Especially high turbulence kinetic energy levels are found
Fig. 19. Contour plots of time averaged axial velocity for power k = 1/7 (left) and k = 1 (right). (a) Center (y = 0, xz plane view).
(b) Thigh region (z = 0.3, xy-plane view). (c) Hip region, z = 0.5 and (d) chest region, z = 1.0.



Table 6
Estimated sizes of the separation zone (m)

Power, k = 1/7 Power, k = 1 Experiment [41]

Upper

Length 0.610 0.762 0.559
Width 0.305 0.356 0.330

Lower

Length 0.178 0.584 –
Width 0.025 0.076 –

Fig. 20. Contour plots of time averaged kinetic energy for power k = 1/7 (left) and k = 1 (right). (a) Center (y = 0, xz plane view).
(b) Thigh region (z = 0.3, xy-plane view). (c) Hip region, z = 0.5 and (d) chest region, z = 1.0.
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near the thigh region for a power of k = 1. This strong turbulence energy may enlarge the wake region in the
lateral direction, compared to that for a power of k = 1/7. Interestingly, the turbulence kinetic energy is very
small near the chest region. Particles or contaminant gases trapped in this region may thus have a poor dis-
persion or mixing rate.

The unsteady characteristics of flow behind the mannequin are investigated by determining vortex-shed-
ding frequencies. The sensors are located at seven different heights representing the levels of the nose, neck,
chest, elbows, waist, hip and thigh (i.e., 0.356, 0.457, 0.559, 0.660, 0.762, 0.864 and 0.965 m from the wall,
respectively). The sensor array is located 0.914 m downstream from the mannequin and 0.203 m away from
the center axis. Shedding frequencies are analyzed from t = 60 to t = 420 s. In order to find a dominant



Table 7
Estimated shedding frequency (Hz)

Present (power k = 1/7) Experiment [41]

Left location Right location

Hip 0.891 1.669 0.791
Waist 0.154/0.986 0.871/2.51 0.703
Elbows 0.179 0.316 0.689
Chest 0.506 0.995 0.908
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shedding frequency, a spectral analysis was performed. We utilized an overlapped time window technique in
applying the fast Fourier transformation (FFT) in order to enlarge the ensemble sample size. In the present
study, we used N = 2048 sample data points and 12 ensemble data sets. The sampling time is Dt = 0.015 s.
The corresponding Nyquist frequency is 33.33 Hz. The power spectrum for power k = 1 shows no predom-
inant frequency, while the spectrum for power k = 1/7 shows dominant frequencies at each different location
but these frequencies are not strongly dominant. This is because the flow depends on the various character-
istic length scales in each region. Table 7 shows the estimated dominant frequencies at the different loca-
tions. The dominant frequencies in the present study are fairly good agreement with those in the
experiment even though the posture of the mannequin in the present simulations is not quite the same
as in the experiment.

3.6. Flow induced by human motion

Contaminant transport as induced by human motion and other factors within a workplace environment is
important in determining evacuation and cleanup procedures. Results presented in this section correspond to
realistic simulations of human walking motion using the present immersed-boundary method. The adult
human rendering discussed in Section 2.3.2 is used.
Fig. 21. Front views of: (a) human rendering model (15 segments) and (b) skeleton model (black circles represent joint positions).
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3.6.1. Human locomotion

The biomechanics of human locomotion is extremely complex since the dynamics of bones and muscles are
mutually correlated. A simple but popular model is a skeleton model (kinematic chain), consisting of rigid links
connected by joints [42]. Based on the present mannequin model, we construct a skeleton model, which has
eighteen rigid links and sixteen joints as shown in Fig. 21. The corresponding joints are shown as black circles.
The positions of each joint are determined as the center positions of the overlapped regions between the two
segments. These joints are used in a reference position for rotating each segment and in constraints for con-
necting each segment.

A complete kinematic model of a human body calculates forces and torques at the joints based on the con-
tact forces. In this study, however, we focus on movement of multiple joints and corresponding body seg-
ments. At a given joint angle progression within a movement cycle, we define the joint locations, rotation
axes, and relative motion, each of which depends on the movement of each segment. For movement of the
body segments within an advection time step Dt, the kinematic relation between the initial position vector
xk

1 and the final position vectors xk
2 for the kth segment can be written as
xk
2 ¼ AðDhkÞðxk

1 � xk
rÞ þ xk

r þ xk
J þ xk

P: ð34Þ

Here, A is the transformation matrix, Dhk ¼ hk

2 � hk
1 is the joint angle movement vector, xk

r is a reference posi-
tion vector, xk

J is a constitutive joint movement vector and xk
P is a translation vector due to the motion of the

entire system. A three-dimensional rotating transformation matrix can be decomposed in a Cartesian coordi-
nate system as
Fig. 22. Progression of joint angles within a movement cycle.

Fig. 23. Kinematics of walking motion: (a) position and (b) velocity at chest, left foot and right foot.



Fig. 24
(f) t =
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A ¼ AxðuxÞAyðuyÞAzðuzÞ; ð35Þ
where ux, uy and uz are rotation angles in a Cartesian coordinate system. The transformation matrix can be
decomposed in each direction as
. Evolution of iso-surfaces of streamwise velocity at each time instant: (a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0,
2.5, (g) t = 3.0, and (h) t = 3.5 s.



Fig. 25
(d) t =

J.-I. Choi et al. / Journal of Computational Physics 224 (2007) 757–784 781
Ax ¼
1 0 0

0 cos ux � sin ux

0 sin ux cos ux

2
64

3
75; Ay ¼

cos uy 0 � sin uy

0 1 0

sin uy 0 cos uy

2
64

3
75; Az ¼

cos uz � sin uz 0

sin uz cos uz 0

0 0 1

2
64

3
75: ð36Þ
. Evolution of coherent vortical structures induced human walking motion at each time instant: (a) t = 0, (b) t = 0.5, (c) t = 1.0,
1.5, (e) t = 2.0, (f) t = 2.5, (g) t = 3.0 and (h) t = 3.5 s. Contours show the magnitude of the streamwise vorticity.
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When the body is moved, the outward normal vectors at the immersed surface have to be adjusted to the ro-
tated coordinate system. The corresponding outward normal vector at the final posture can be written as
nk
2 ¼ AðDhkÞnk

1; ð37Þ

where nk

1 is the outward normal vector at the initial posture. The velocity uS at the immersed surfaces can be
simply defined as,
uS ¼ ðx2 � x1Þ=Dt: ð38Þ

To mimic human walking, we design the progression of joint angles within a movement period as shown in

Fig. 22. The period of walking motion is set to 0.7 s. While thighs, arms, elbows and hands are moved, the
other segments keep their initial posture during walking. Maximum joint angle displacements for thighs, arms,
elbows and hands are 20�, 15�, 30� and 30�, respectively (see Fig. 23).

3.6.2. Wake flows

As a test case, we consider human walking motion in a narrow hallway. The computational domain size in
unit of meters is (0, 4.22) · (0, 1.27) · (0, 2.44) for the streamwise, transverse and normal directions, respec-
tively. A mesh containing 257 · 65 · 109 nodes is used in the calculation. The freestream velocity is initially
set to u1 = 0.0001 m/s (nearly zero since the flow will be induced by the body motion). The computational
time step is chosen as Dt = 0.01 s. Outflow conditions are used in both the inlet and outlet regions in the
streamwise direction while no-slip conditions are applied to the other boundaries. The human model is initially
located 1 m upstream of the hall entrance and is centered within the hall. We used the same joint angle pro-
gressions for walking motion as shown in Fig. 22. However, a pivot position is introduced in order to walk
forward. For example, the left foot acts as pivot when the right foot is moving forward. Fig. 24 shows the
position and velocity at the chest, right foot and left foot during walking motion. Walking is started at
t = 0.02 s and is stopped at t = 2.82 s. The average walking velocity in the simulation is 0.907 m/s, which is
lower than the average human walking speed (1.29 m/s) [43].

Figs. 24 and 25 provide details of the unsteady flow structure in the vicinity of the human over 3.5 s of
activity. Figs. 24 shows iso-surfaces of streamwise velocity (u = �0.5, 0.5 and 1.0 m/s) during the walking
event. The time interval between snapshots is 0.5 s. When the human starts to walk, a region of negative veloc-
ity is formed behind it. When the human stops walking, the wake behind human continues to move upstream
due to fluid inertia. Fig. 25 shows the evolution of vortical structures defined by the vortex identification
method [38]. The coloring of the iso-surfaces represents the magnitude of the streamwise vorticity. During
the walking motion, vortices are shed from body surfaces. Especially strong vortical structures are observed
near the hands and legs, which locally move more rapidly than the average walking speed. The vortical struc-
tures elongate as the human accelerates but begin to dissipate after walking ceases.

4. Conclusions

A new immersed boundary method for incompressible flow simulations is proposed in this work.
Immersed-boundary objects are rendered as level sets in the computational domain, and the decomposition
of the flow field into cells within, near, and outside the body is performed using a Heaviside function based
on a signed distance function. A novel decision procedure using a consensus algorithm is developed in order
to enhance the efficiency and accuracy of the classification of points as being inside or outside an immersed
body. The velocity field near immersed bodies is determined from separate interpolations of the components
tangent and normal to the immersed surface. The tangential velocity near the surface is constructed as a
power-law function of the local wall normal distance. Appropriate choices of the power law enable the method
to approximate the energizing effects of a turbulent boundary layer for higher Reynolds number flows. Lam-
inar flows past a circular cylinder and sphere are computed in order to validate the present method. The results
show good predictions of the near-wall velocity, pressure fields and unsteady characteristics for the different
flow regimes. Results for high Reynolds number flow over a NACA 0012 airfoil show good agreement with
experimental data and XFOIL analysis, even though the turbulent boundary layers are not resolved. A large
eddy simulation has been performed for flow over a mannequin. Two distinct separation zones are observed,
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and the use of a power-law of 1/7 is shown to result in good agreement for the size and shape of the recircu-
lation zone located in front of the mannequin. Finally, the technique is used to simulate the flow induced by
realistic human walking motion. This case illustrates the ability of the procedure to handle motion induced by
immersed objects with multiple moving components.
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[33] H. Dütsch, F. Durst, S. Becker, H. Lienhart, Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–

Carpenter numbers, Journal of Fluid Mechanics 360 (1998) 249–271.
[34] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving

boundaries, Journal of Computational Physics 315 (2006) 12–40.
[35] M. Drela, XFOIL: an analysis and design system for low Reynolds number airfoils, in: T.J. Mueller (Ed.), Lecture Notes in

Engineering, vol. 54, Springer Verlag, 1989.
[36] I.H. Abbott, A.E. Von Deonhoff, Theory of Wing Sections, Dover Publications Inc., 1959, pp. 462–463.
[37] T.A. Johnson, Numerical and experimental investigation of flow past a sphere up to a Reynolds number of 300, Ph.D., dissertation,

University of Iowa, 1996.
[38] J. Jeong, F. Hussain, On the identification of a vortex, Journal of Fluid Mechanics 285 (1995) 59–94.
[39] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, Journal of Fluid Mechanics 378 (1999) 19–70.
[40] G.S. Constantinescu, K.D. Squires, LES and DES investigations of turbulent flow over a sphere, AIAA Paper 2000-0540, 2000, pp. 1–

11.
[41] T. Kim, M.R. Flynn, Airflow pattern around a worker in a uniform freestream, American Industrial Hygiene Association Journal 52

(1991) 287–296.
[42] V.M. Zatsiorsky, Kinetics of Human Motion, Human Kinetics, 2002.
[43] R.W. Selles, J.B.J. Bussmann, R.C. Wagenaar, H.J. Stam, Comparing predictive validity of four ballistic swing phase models of

human walking, Journal of Biomechanics 34 (2001) 1171–1177.


	An immersed boundary method for complex incompressible flows
	Introduction
	Numerical method
	Governing equations
	Basic formulation
	Immersed boundary method
	Classification of computational nodes
	Surface definition and distance function
	Interpolation methods
	Velocity interpolation
	Pressure interpolation
	Determination of information at the interpolation point



	Numerical examples
	Flow over a circular cylinder
	Flow over an in-line oscillating cylinder
	Flow over an airfoil
	Flow over a sphere
	Flow over a stationary mannequin
	Flow induced by human motion
	Human locomotion
	Wake flows


	Conclusions
	Acknowledgements
	References


